eduãs

GCE A LEVEL MARKING SCHEME

AUTUMN 2021

A LEVEL
PHYSICS - COMPONENT 2
A420U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2021 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL COMPONENT 2 - ELECTRICITY AND THE UNIVERSE

AUTUMN 2021 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (except for the extended response question).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question
A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statement.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$	correct answer only
ecf	$=\quad$ error carried forward	
bod	$=\quad$ benefit of doubt	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
1	(a)			Thermistor A and wider / greater / larger variation of resistance [between $20^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$]		1		1		
	(b)	(i)	As temperature falls R of thermistor increases (1) Thermistor resistance is a larger fraction of total R (1) Since V increases as R increases, $V_{\text {out }}$ must increase (1) Accept alternative based on current. Accept reference to formulae.	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3			
		(ii)	Correct use of potential divider equation for A and B (1) Correct reading from graph at $10^{\circ} \mathrm{C}$ for both A and $\mathrm{B}(1)$ Correct conclusion - A possible, B not possible (1) Thermistor A: Either: Apply potential divider equation to determine minimum value of variable resistor for $V_{\text {out }}=2[\mathrm{~V}]$ i.e. $2=\frac{9 \times 10}{(10+R)}$ $R=35 \mathrm{k}[\Omega]$ which is within range for the variable resistor, so possible Or: Determine max possible $V_{\text {out }}$ at $10^{\circ} \mathrm{C}$ i.e. $V_{\text {out }}=\frac{9 \times 10}{(10+20)}$ $V_{\text {out }}=3[\mathrm{~V}]$, which is above requirement, so possible.			3	3	2		

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
	Thermistor B: Either: Apply potential divider equation to determine minimum value of variable resistor for $V_{\text {out }}=2 \mathrm{~V}$ i.e. $2=\frac{9 \times 5}{(5+R)}$ $R=17.5 \mathrm{k}[\Omega]$, which is below min of range for the variable resistor, so not possible Or: Determine max possible $V_{\text {out }}$ at $10^{\circ} \mathrm{C}$ i.e. $V_{\text {out }}=\frac{9 \times 5}{(5+20)}$ $V_{\text {out }}=1.8[\mathrm{~V}]$, which is below requirement, so not possible. Alternative approach: Ratio of pds $=\frac{2}{7}(1)$ Both values of R of thermistor at $10^{\circ} \mathrm{C}$ from graph i.e. $10 \mathrm{k} \Omega$ and $5 \mathrm{k} \Omega$ (1) Equate ratios to show thermistor A is possible and thermistor B is not e.g. For $\mathrm{A}: \frac{2}{7}=\frac{10}{R_{\text {variable }}}$ and for $\mathrm{B}: \frac{2}{7}=\frac{5}{R_{\text {variable }}}$ (1) Or: use $\frac{2}{7}(1)$ ratio to determine allowable range of resistance $-5.7 \mathrm{k} \Omega$ and $14.3 \mathrm{k} \Omega(1)$ Conclusion (1)						

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
	Alternative approach: Calculate $V_{\text {out }}$ for both 20 k and 50 k , which will yield 3 V and 1.5 V for thermistor A (1) For thermistor B , the corresponding voltages will be 1.8 V and 0.82 V (1) Conclusion (1)						
(iii)	First mark for either: Determination of V across variable resistor $(7 \mathrm{~V})$ and R across variable resistor ($35 \mathrm{k} \Omega$) (possible ecf) if using $P=\frac{V^{2}}{R}$ Or: Determination of $I\left(2 \times 10^{-4} \mathrm{~A}\right)$ and R across variable resistor ($35 \mathrm{k} \Omega$) (possible ecf) (if using $P=I^{2} R$) Or: Determination of $I\left(2 \times 10^{-4} \mathrm{~A}\right)$ and V across variable resistor (7 V) if using $P=I V$ $P=1.4 \mathrm{~m}[\mathrm{~W}](1)$		2		2	2	
(iv)	Small power output will have negligible effect on thermistor so OK			1	1		
	Question 1 total	1	5	4	10	4	0

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
2	(a)			Ω shown as VA^{-1} and Farad shown as CV^{-1} (1) C shown as As [or equivalent] (1) Convincing algebra (1) Alternative: Ω shown as $\mathrm{Js}\left(\mathrm{C}^{2}\right)^{-1}(1)$ Farad shown as $\mathrm{C}^{2} \mathrm{~J}^{-1}(1)$ Convincing algebra (1)	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$		3	1	
	(b)	(i)	Circuit showing all components other than ammeter and voltmeter (1) Correctly positioned voltmeter and ammeter (1)	2			2		2	
		(ii)	$\begin{align*} & Q_{0}=\left[2200 \times 10^{-6} \times 6\right]=0.0132[\mathrm{C}](1) \\ & R C=97[\mathrm{~s}](1) \tag{1} \end{align*}$ Substitution: $Q=0.0132 \mathrm{ecf}\left(1-e^{-\frac{20}{97}}\right)$ $Q=2.46 \mathrm{~m}[\mathrm{C}](1)$	1	$\begin{aligned} & 1 \\ & 1 \end{aligned}$ 1		4	3	4	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(iii)		Substitution: $V=6\left(1-e^{-\frac{20}{97}}\right)(1)$ $V=1.1[2 \mathrm{~V}] \text { Yes, consistent (1) }$ Alternative: $V=\frac{Q}{C}=\frac{2.46 \times 10^{-3}}{2200 \times 10^{-6}}$ $V=1.1[2] \mathrm{m}[\mathrm{V}]$ Yes, consistent (1) (ecf on Q, and corresponding conclusion) A variation on this approach would be using the 1.1 V given in the question, calculate the charge as 2.42 mC (1) and comment on how close this is to the 2.46 mC calculated in (ii) (1)			2	2	1	2
(c)		$n=8.25 \times 10^{16}\left(\right.$ ecf on $\left.Q_{0}\right)$		1		1	1	1	
		Question 2 total	4	6	2	12	6	9	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
3	(a)	(i)		Small uncertainty compared to uncertainty in R / small error bars $/ \pm 0.1^{\circ} \mathrm{C}$			1	1		1
		(ii)	Point plotted at $5.3 \Omega\left(30^{\circ} \mathrm{C}\right)$ and error bars from 5.1 to 5.5Ω (1) Point plotted at 5.9Ω with error bar from 5.8 to 6.0Ω (1)		2		2	2	2	
		(iii)	Acceptable lines of max and min gradients (1) Max gradient $=0.022\left[\Omega^{\circ} \mathrm{C}^{-1}\right](1)$ (ecf from incorrect gradients) Min gradient $=0.015\left[\Omega^{\circ} \mathrm{C}^{-1}\right](1)$		3		3	2	3	
		(iv)	$\begin{aligned} & \text { Mean gradient }=0.0185\left[\Omega^{\circ} \mathrm{C}^{-1}\right](\text { ecf })(1) \\ & \% \text { uncertainty calculated as approximately } 19 \% \text { (1) } \end{aligned}$		2		2	2	2	
	(b)	(i)	$\begin{aligned} & \text { Gradient }=R_{0} \alpha(1) \\ & \text { Description in terms of } y=m x+c(1) \end{aligned}$			2	2	1	2	
		(ii)	$\begin{aligned} & \text { Mean } R_{0}=4.775 \Omega(1) \\ & \% \text { unc in } R_{0}=4 \% \text { (approx.) (1) } \\ & \alpha=\frac{0.0185}{4.775}(\text { ecf on both values })=0.00387^{\circ} \mathrm{C}^{-1}(1) \\ & \% \text { unc in } \alpha=19 \%+4 \%=23 \% \text { (Accept answer based on } \\ & \text { previous calculations and unc }=0.000876 \text { (1) } \\ & \alpha=(3.9 \pm 0.9) \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1} \text { sig figs required. Ignore units (1) } \end{aligned}$			5	5	4	5	

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(c)	Temperature of wire different to temp at thermometer (1) Any \times (1) from: - Add stirrer or reference to stirring to equalize the temperature. - Time required for temperature to equalize. - Comment based on cooling taking more time and thus easier to read.			2	2		2
	Question 3 total	0	7	10	17	11	17

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)	(i)		Surface cracks / imperfections / scratch (1) propagates through sample when under tension (1) Accept answer based on breaking bonds e.g. bonds break (1) and explanation of stress passing on to next bond etc (1)	2			2		
		(ii)	Outside surface will need to be put under greater tension (1) for cracks to propagate or bonds to break (1) Or vice-versa: Surface cracks closed under cooling (1) Outside under compression and cracks do not propagate (1)	2			2			
	(b)	(i)	CSA calculated as $2.01 \times 10^{-8}\left[\mathrm{~m}^{2}\right]$ (1) can be awarded by implication from final answer $\begin{aligned} & \Delta x=\frac{\left(20 \times 10^{-3} \times 9.81 \times 0.30\right)}{\left(2.01 \times 10^{-8} \times 2 \times 10^{9}\right)} \text { substitute and re-arrange (1) } \\ & \Delta x=1.46 \times 10^{-3}[\mathrm{~m}](1) \end{aligned}$	1	1 1		3	2		
		(ii)	$\begin{aligned} & F=9.00 \times 10^{7} \times 2.01 \times 10^{-8} \text { substitution and re-arrange, ecf on } \\ & \text { CSA (1) } \\ & F=1.81[\mathrm{~N}](1) \end{aligned}$		2		2	1		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(c)	(i)		Either: Determine max tension when $T=0.4$ [s] i.e. max tension $=m \omega^{2} r$ $+m g$ (1) Substitution: max tension $=\left(20 \times 10^{-3} \times 246.7 \times 0.3\right)+\left(20 \times 10^{-3}\right.$ $\times 9.81$) (1) Max tension $=1.68[\mathrm{~N}]$, so OK (1) Or: Determine min period for F breaking $\geq 1.81 \mathrm{~N}$ Max tension $=m \omega^{2} r+m g$ and $\omega=\frac{2 \pi}{T}$ (1) Substitution: $1.81=\frac{\left(20 \times 10^{-3} \times 4 \pi^{2} \times 0.3\right)}{\left(T+20 \times 10^{-3} \times 9.81\right)}(1)$ $T=0.15[\mathrm{~s}]$, so OK (1) [Award 1 mark for correct consideration of centripetal force only]			3	3	2	

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(ii)	 Tension horizontal $=1.48 \mathrm{~N}$ (1) Min tension $=1.28 \mathrm{~N}$ (1) Scale (1) Plot (1)	1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		4	3	
	Question 4 total	6	7	3	16	8	0

| Question | | | Marks available | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{5}$ | (a) | (i) | | | |
| (ii) | | | | | |

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
	(ii)		$\begin{aligned} & \text { Potential difference }=9 \times 10^{9} \times 3 \times 10^{-9}\left(\frac{1}{0.006}-\frac{1}{0.004}\right) \\ & \mathrm{pd}=-2250[\mathrm{~V}](1) \\ & \text { Substitution: } W=Q V=-6 \times 10^{-9} \times-2250(1) \\ & W=1.35 \times 10^{-5} \mathrm{~J}(\text { unit mark })(1) \end{aligned}$	1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$		4	2	
(d)		No work done when moving along equipotential (1) Pathway shown between inner and outer equipotential is equal in length to previous pathway..... (1) as distance between charges does not change or as change in potential is the same. (1)	3			3			
		Question 5 total	10	5	0	15	4	0	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
6			Indicative content: - Analysis of absorption spectrum will identify elements in star. - Wavelength at peak intensity and Wien's law to determine surface temperature of star. - Luminosity / power can be determined from inverse square law. - Surface area determined using Stefan's law, knowing luminosity and temperature. - Diameter/radius determined from surface area. - Motion of star determined from red/blue shift. Link to Hubble. 5-6 marks Complete coverage using 5 or more bullet points and relevant formulae to support points. There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured 3-4 marks Either coverage of 5 or more bullet points without supporting formulae or $\mathbf{3}$ or $\mathbf{4}$ bullet points covered with some supporting formulae. There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. 1-2 marks One or two bullet points covered with or without supporting formulae. There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. 0 marks No attempt made or no response worthy of credit.	6			6		
		Question 6 total	6	0	0	6	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
7	(a)	(i)		Mean radial velocity $=20 \mathrm{~km} \mathrm{~s}^{-1}$ unit mark		1		1	1	
		(ii)	Correct readings from graph for A and B i.e. peak speed $A=60 \mathrm{~km} \mathrm{~s}^{-1}$ and $B=30 \mathrm{~km} \mathrm{~s}^{-1}$ (1) Orbiting speed of $A=40 \mathrm{~km} \mathrm{~s}^{-1}$ and $B=10 \mathrm{kms}^{-1}$ (1)		2		2	2		
		(iii)	$\begin{aligned} & R_{\mathrm{A}}=\frac{\nu T}{2 \pi}(1) \\ & R_{\mathrm{A}}=\frac{40 \times 14(1) \times 24 \times 3600}{2 \pi} \text { ecf for orbiting speed } \\ & R_{\mathrm{A}}=7.70 \times 10^{6} \mathrm{k}[\mathrm{~m}](1) \end{aligned}$		3		3	2		
		(iv)	R_{B} same method (or $1 / 4$ of $\left.R_{\mathrm{A}}\right)=1.93 \times 10^{6} \mathrm{k}[\mathrm{m}]$ (1) Separation $=9.63 \times 10^{6} \mathrm{k}[\mathrm{m}](1)$		2		2	1		
	(b)	(i)	Re-arrange to give $M_{\text {total }}=\frac{4 \pi^{2} d^{3}}{G T^{2}}$ (1) Substitution: $M_{\text {toala }}=\frac{4 \pi^{2} \times\left(9.63 \times 10^{9}\right)^{3} \text { ecf }}{6.67 \times 10^{-11} \times 1.46 \times 10^{12}}$ ecf on T (if same error as in (iii) (1) $M_{\text {total }}=3.6 \times 10^{29} \mathrm{k}[\mathrm{~g}](1)$	1	1		3	2		

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(ii)	For first mark either: $M_{A} v_{A}=M_{B} v_{B}$ Therefore $\frac{M_{\mathrm{A}}}{M_{\mathrm{B}}}=\frac{v_{\mathrm{B}}}{v_{\mathrm{A}}}=1: 4$ Or $M_{\mathrm{A}} R_{\mathrm{A}}=M_{\mathrm{B}} R_{\mathrm{B}}$ Therefore $\frac{M_{\mathrm{A}}}{M_{\mathrm{B}}}=\frac{R_{\mathrm{B}}}{R_{\mathrm{A}}}=1: 4$ (1) (Ratio explained) ecf from (b)(i) $M_{\mathrm{A}}=7.2 \times 10^{28} \mathrm{~kg} \text { and } M_{\mathrm{B}}=2.9 \times 10^{29} \mathrm{~kg}(1)$ Alternative: Correct use of $r_{1}=\frac{M_{2} d}{\left(M_{1}+M_{2}\right)}$ from formulae sheet		2		2	1	
	Question 7 total	1	12	0	13	9	0

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)			Use of $t=\frac{1}{H}$ to determine H in seconds ${ }^{-1}\left(2.26 \times 10^{-18} \mathrm{~s}^{-1}\right)(1)$ Substitution: $\rho_{\mathrm{c}}=\frac{3 \times\left(2.26 \times 10^{-18}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11}}$ ecf on calculated value of $H_{0}(1)$ $\rho_{\mathrm{c}}=9.2 \times 10^{-27}$ (approx. $\left.10^{-26}\right)(1)$ Or alternative approaches possible. Award 1 mark only if H_{0} from data sheet used.			3	3	2	
	(b)	(i)	Galaxy is receding (1) Red shift / wavelength extended (1)	2			2			
		(ii)	$\Delta \lambda$ calculated $=2.6 \mathrm{n}[\mathrm{m}]$ (1) can be awarded from correct v by implication Substitution and re-arrangement: $v=\frac{\Delta \lambda c}{\lambda}$, so $v=1.97 \times 10^{6}\left[\mathrm{~ms}^{-1}\right](1)$ Substitution and re-arrangement: $D=\frac{v}{H_{0}}$, so $D=8.9 \times 10^{23}[\mathrm{~m}](1)$		3		3	2		

Question	Marking details	Marks available					
		A01	AO2	AO3	Total	Maths	Prac
(c)	Data does not agree with Hubble's law or v not proportional to D or data provides two different values for H_{0} (or calculated: $\left.2.52 \times 10^{-19} \text { and } 1.75 \times 10^{-18}\right)(1)$ Any $2 \times(1)$ from: - Measurements may be incorrect / large uncertainty in measured quantities - Wikipedia may be incorrect - Not a good sample - need to measure data from many more galaxies at various distances - More data needed to confirm Hubble - Relevant comment(s) if two values for H_{0} calculated. - Motion affected by gravitational field of cluster/ cluster effect on motion should be considered.			3	3		
	Question 8 total	2	3	6	11	4	0

A LEVEL COMPONENT 2: ELECTRICITY AND THE UNIVERSE SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	1	5	4	10	4	0
2	4	6	2	12	6	9
3	0	7	10	17	11	17
4	6	7	3	16	8	0
5	10	5	0	15	4	0
6	6	0	0	6	0	0
7	1	12	0	13	9	0
8	$\mathbf{3 0}$	$\mathbf{4 5}$	$\mathbf{2 5}$	$\mathbf{1 0 0}$	$\mathbf{4 6}$	$\mathbf{2 6}$
TOTAL					$\mathbf{2 6}$	

